Direct Current Stimulation (DCS) Modulates Lipid Metabolism and Intercellular Vesicular Trafficking in SHSY-5Y Cell Line: Implications for Parkinson's Disease

直流电刺激 (DCS) 调节 SHSY-5Y 细胞系中的脂质代谢和细胞间囊泡运输:对帕金森病的影响

阅读:2
作者:Marco Piccoli, Luisa Barbato, Natale Vincenzo Maiorana, Alessandra Mingione, Francesca Raimondo, Marco Ghirimoldi, Federica Cirillo, Mattia Schiepati, Domenico Salerno, Luigi Anastasia, Elisabetta Albi, Marcello Manfredi, Tommaso Bocci, Alberto Priori, Paola Signorelli

Abstract

The modulation of the brain's electrical activity for therapeutic purposes has recently gained attention, supported by the promising results obtained through the non-invasive application of transcranial direct current stimulation (tDCS) in the treatment of neurodegenerative and neurological diseases. To optimize therapeutic efficacy, it is crucial to investigate the cellular and molecular effects of tDCS. This will help to identify important biomarkers, predict patient's response and develop personalized treatments. In this study, we applied direct current stimulation (DCS) to a neural cell line, using mild currents over short periods of time (0.5 mA, 20 min), with 24-h intervals. We observed that DCS induced changes in the cellular lipidome, with transient effects observed after a single stimulation (lasting 24 h) and more significant, long-lasting effects (up to 72 h) after repeated stimulation cycles. In neural cells, multiple DCS treatment modulated structural membrane lipids (PE, PS, PI), downregulated glycerol lipids with ether-linked fatty acids and pro-inflammatory lipids (ceramides and lyso-glycerophospholipids) (p ≤ 0.005). Multiple DCS sessions altered transcriptional activity by decreasing the expression of inflammatory cytokines (TNF-α, p ≤ 0.05; IL-1β, p ≤ 0.01), while increasing the expression of neuroprotective factors such as heme oxygenase-1 (p ≤ 0.0001) and brain-derived neurotrophic factor (p ≤ 0.05), as well as proteins involved in vesicular transport (SNARE, sorting nexins and seipin and α-synuclein; p ≤ 0.05). In addition, DCS enhanced the release of extracellular vesicles, with repeated stimulations significantly increasing the release of exosomes threefold. In conclusion, while a single electrical stimulation induces transient metabolic changes with limited phenotypic effects, repeated applications induce a broader and deeper modulation of lipid species. This may lead to a neuroprotective and neuroplasticity-focussed transcriptional profile, potentially supporting the therapeutic effects of tDCS at the cellular and molecular level in patients..

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。