Ca2+-desensitizing hypoxic vasorelaxation: pivotal role for the myosin binding subunit of myosin phosphatase (MYPT1) in porcine coronary artery

Ca2+ 脱敏缺氧血管舒张:肌球蛋白磷酸酶 (MYPT1) 的肌球蛋白结合亚基在猪冠状动脉中的关键作用

阅读:4
作者:Robert L Wardle, Min Gu, Yukisato Ishida, Richard J Paul

Abstract

Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We showed that at high stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in [Ca(2+)](i). This 'Ca(2+)-desensitizing hypoxic relaxation' was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)]. Rho kinase-dependent phosphorylation of MYPT1 (p-MYPT1) is associated with decreased MRLC phosphatase (MLCP) activity, and increased Ca(2+) sensitivity of both p-MRLC and force. We tested the hypothesis that hypoxia induces Ca(2+)-desensitizing hypoxic relaxation via dephosphorylation of p-MYPT1, consequently increasing MLCP activity and thus decreasing p-MRLC. alpha-Toxin-permeabilized PCASM pretreated with ATPgammaS did not relax in response to hypoxia. Moreover, when MRLC but not MYPT1 was protected from ATPgammaS thiophosphorylation by the MRLC kinase inhibitor ML7 (300 mum), hypoxia remained ineffective. In contrast, hypoxic relaxation was preserved with further addition of the Rho kinase inhibitor Y27632 (1 mum), to attenuate thiophosphorylation of MYPT1. Importantly, measurements of p-MRLC, and p-MYPT1 at T696 and T853 (human sequence) paralleled that of force. We conclude that Ca(2+)-desensitizing hypoxic relaxation requires dephosphorylation of p-MYPT1. Moreover, no kinases, other then those inhibited by ML7 and Y27632, nor their associated phosphoproteins can be involved in Ca(2+)-desensitizing hypoxic relaxation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。