Cyclooxygenase products stimulate carbon monoxide production by piglet cerebral microvessels

环氧合酶产品刺激仔猪脑微血管产生一氧化碳

阅读:8
作者:Alie Kanu, David Gilpin, Alexander L Fedinec, Charles W Leffler

Abstract

Products of arachidonic acid (AA) metabolism by cyclooxygenase (Cox) are important in regulation of neonatal cerebral circulation. The brain and cerebral microvessels also express heme oxygenase (HO) that metabolizes heme to carbon monoxide (CO), biliverdin, and iron. The purpose of this study in newborn pig cerebral microvessels was to address the hypothesis that Cox products affect HO activity and HO products affect Cox activity. AA (2.0-20 microM) increased prostaglandin E2 (PGE2) measured by radioimmunoassay (RIA) and also CO measured by gas chromatography/mass spectrometry (GC/MS). Further, 10(-4) M indomethacin, which inhibited Cox, reduced both AA and heme-induced CO production. Conversely, neither exogenous 2 x 10(-6) M heme, which markedly increased CO production, nor the inhibitor of HO, chromium mesoporphyrin, altered PGE2 synthesis. Because AA metabolism by Cox generates both prostanoids and superoxides, we determined the effects of the predominant prostanoid and superoxide on CO production. Although PGE2 caused a small increase in CO production, xanthine oxidase plus hypoxanthine, which produces superoxide, strongly stimulated the production of CO by cerebral microvessels. This increase was mildly attenuated by catalase. These data suggest that Cox-catalyzed AA metabolites, most likely superoxide and/or a subsequent reactive oxygen species, increase cerebrovascular CO production. This increase seems to be caused, at least in part, by the elevation of HO-2 catalytic activity. Conversely, Cox activity is not affected by HO-catalyzed heme metabolites. These data suggest that some cerebrovascular functions attributable to Cox activity could be mediated by CO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。