Identification of Antioxidative Peptides Derived from Arthrospira maxima in the Biorefinery Process after Extraction of C-Phycocyanin and Lipids

提取 C-藻蓝蛋白和脂质后,在生物精炼过程中鉴定源自最大节旋藻的抗氧化肽

阅读:4
作者:Renao Bai, Trung T Nguyen, Yali Zhou, Yong Diao, Wei Zhang

Abstract

Arthrospira maxima has been identified as a sustainable source of rich proteins with diverse functionalities and bioactivities. After extracting C-phycocyanin (C-PC) and lipids in a biorefinery process, the spent biomass still contains a large proportion of proteins with potential for biopeptide production. In this study, the residue was digested using Papain, Alcalase, Trypsin, Protamex 1.6, and Alcalase 2.4 L at different time intervals. The resulting hydrolyzed product with the highest antioxidative activity, evaluated through their scavenging capability of hydroxyl radicals, superoxide anion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS), was selected for further fractionation and purification to isolate and identify biopeptides. Alcalase 2.4 L was found to produce the highest antioxidative hydrolysate product after four-hour hydrolysis. Fractionating this bioactive product using ultrafiltration obtained two fractions with different molecular weights (MW) and antioxidative activity. The low-molecular-weight fraction (LMWF) with MW <3 kDa had higher DPPH scavenging activity with the IC50 value of 2.97 ± 0.33 compared to 3.76 ± 0.15 mg/mL of the high-molecular-weight fraction (HMWF) with MW >3 kDa. Two stronger antioxidative fractions (F-A and F-B) with the respective significant lower IC50 values of 0.83 ± 0.22 and 1.52 ± 0.29 mg/mL were isolated from the LMWF using gel filtration with a Sephadex G-25 column. Based on LC-MS/MS analysis of the F-A, 230 peptides derived from 108 A. maxima proteins were determined. Notably, different antioxidative peptides possessing various bioactivities, including antioxidation, were detected with high predicted scores together with in silico analyses on their stability and toxicity. This study established knowledge and technology to further value-add to the spent A. maxima biomass by optimizing hydrolysis and fraction processes to produce antioxidative peptides with Alcalase 2.4 L after two products already produced in a biorefinery. These bioactive peptides have potential applications in food and nutraceutical products.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。