The Effects of Pt-Doped TiO2 Nanoparticles and Thickness of Semiconducting Layers at Photoanode in the Improved Performance of Dye-Sensitized Solar Cells

Pt 掺杂 TiO2 纳米粒子和光阳极半导体层厚度对染料敏化太阳能电池性能提升的影响

阅读:7
作者:M Mujahid, Omar A Al-Hartomy

Abstract

This work synthesized Pt-doped dye-sensitized solar cells (DSSC) with different molar ratios and thicknesses. The materials were revealed fully through X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The photovoltaic properties of the sample were studied by UV-visible spectroscopy, electrochemical impedance spectroscopy (EIS), and IPEC (incident photon-to-current conversion efficiency) techniques. EIS analysis established the decrease in series resistance at the electrolyte interface. It could be one of the reasons for the increase in electron transfer rate and decrease in the recombination process at the interface. Statistical data obtained from optical and electrical investigations revealed that the electrical power-output efficiency of DSSC was 14.25%. It was found that a high ratio of Pt doping and thinner thickness can promote cell performance, owing to the reduction of series resistance, lower bandgap, and high dye adsorption. Doping TiO2 with Pt reduced its energy bandgap and introduces intermediate energy levels inside TiO2 to facilitate the transition of electrons at low excitation energies. The absorbance of the samples 0.15 M Pt and 0.25 M Pt showed improvement in the wavelength ranging from 200 to 800 nm by Pt doping.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。