Intersubunit signaling in RecBCD enzyme, a complex protein machine regulated by Chi hot spots

RecBCD 酶中的亚基间信号传导,这是一种受 Chi 热点调控的复杂蛋白质机器

阅读:6
作者:Susan K Amundsen, Andrew F Taylor, Manjula Reddy, Gerald R Smith

Abstract

The Escherichia coli RecBCD helicase-nuclease, a paradigm of complex protein machines, initiates homologous genetic recombination and the repair of broken DNA. Starting at a duplex end, RecBCD unwinds DNA with its fast RecD helicase and slower RecB helicase on complementary strands. Upon encountering a Chi hot spot (5'-GCTGGTGG-3'), the enzyme produces a new 3' single-strand end and loads RecA protein onto it, but how Chi regulates RecBCD is unknown. We report a new class of mutant RecBCD enzymes that cut DNA at novel positions that depend on the DNA substrate length and that are strictly correlated with the RecB:RecD helicase rates. We conclude that in the mutant enzymes when RecD reaches the DNA end, it signals RecB's nuclease domain to cut the DNA. As predicted by this interpretation, the mutant enzymes cut closer to the entry point on DNA when unwinding is blocked by another RecBCD molecule traveling in the opposite direction. Furthermore, when RecD is slowed by a mutation altering its ATPase site such that RecB reaches the DNA end before RecD does, the length-dependent cuts are abolished. These observations lead us to hypothesize that, in wild-type RecBCD enzyme, Chi is recognized by RecC, which then signals RecD to stop, which in turn signals RecB to cut the DNA and load RecA. We discuss support for this "signal cascade" hypothesis and tests of it. Intersubunit signaling may regulate other complex protein machines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。