Transferrin improved the generation of cardiomyocyte from human pluripotent stem cells for myocardial infarction repair

转铁蛋白促进人类多能干细胞生成心肌细胞,用于心肌梗死修复

阅读:6
作者:Fengzhi Zhang, Hui Qiu, Xiaohui Dong, Chunlan Wang, Jie Na, Jin Zhou, Changyong Wang

Abstract

Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) hold great promise for the repair of the injured heart, but optimal cell production in a fully chemically defined and cost-effective system is essential for the efficacy and safety of cell transplantation therapies. In this study, we provided a simple and efficient strategy for cardiac differentiation from hPSCs and performed functional evaluation in a rat model of myocardial infarction. Using a chemically defined medium including four components, recombinant human albumin, ascorbic acid, human transferrin, and RPMI 1640, we developed a manageable and cost-effective protocol for robust generation of CMs from hPSCs. Interestingly, the addition of transferrin helped hPSCs to transit from TeSR-E8 medium to the simple cardiac differentiation medium and successfully initiated mesoderm differentiation without significant cell death. The CM generation efficiency was up to 85% based on cTnT expression. We performed transcriptome profiling from differentiation day 0 to 35, and characterized interesting dynamic change of cardiac genes. CMs derived from transferrin-supplemented simple medium have similar transcriptome and the maturation level compared to those generated in B27 minus insulin medium as well as their in vivo counterparts. Importantly, after transplantation, hPSC-derived CMs survived in the infarcted rat heart, significantly improved the physiological function and reduced fibrosis. Our study offers an easy-to-use and cost-effective method for cardiac differentiation and facilitates the translational application of hPSC-derived CMs for heart repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。