Tailoring Risperidone-Loaded Glycethosomal In Situ Gels Using Box-Behnken Design for Treatment of Schizophrenia-Induced Rats via Intranasal Route

使用 Box-Behnken 设计定制载利培酮的糖基化原位凝胶,用于通过鼻腔内途径治疗精神分裂症诱发的大鼠

阅读:5
作者:Marwa H Abdallah, Hemat El-Sayed El-Horany, Hanan M El-Nahas, Tarek M Ibrahim

Abstract

Schizophrenic patients often face challenges with adherence to oral regimens. The study aimed to highlight the potentiality of intranasal ethanol/glycerin-containing lipid-nanovesicles (glycethosomes) incorporated into in situ gels for sustaining anti-psychotic risperidone (RS) release. The Box-Behnken Design (BBD) was followed for in vitro characterization. Glycethosomal-based in situ gels were examined by physical, ex vivo, and in vivo investigations. The ethanol impact on minimizing the vesicle size (VS) and enhancing the zeta potential (ZP) and entrapment efficiency (EE%) of nanovesicles was observed. Glycerin displayed positive action on increasing VS and ZP of nanovesicles, but reduced their EE%. After incorporation into various mucoadhesive agent-enriched poloxamer 407 (P407) in situ gels, the optimized gel containing 20% P407 and 1% hydroxypropyl methyl cellulose-K4M (HPMC-K4M) at a 4:1 gel/glycethosomes ratio showed low viscosity and high spreadability with acceptable pH, gel strength, and mucoadhesive strength ranges. The ethanol/glycerin mixture demonstrated a desirable ex vivo skin permeability of RS through the nasal mucosa. By pharmacokinetic analysis, the optimized gel showed eight-fold and three-fold greater increases in RS bioavailability than the control gel and marketed tablet, respectively. Following biochemical assessments of schizophrenia-induced rats, the optimized gel boosted the neuroprotective, anti-oxidant, and anti-inflammatory action of RS in comparison to other tested preparations. Collectively, the intranasal RS-loaded glycethosomal gel offered a potential substitute to oral therapy for schizophrenic patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。