Silencing of Dicer1 temporally separates pro- and anti-apoptotic signaling and confers susceptibility to chemotherapy in p53 mutated cells

Dicer1 的沉默暂时分离了促凋亡和抗凋亡信号,并赋予 p53 突变细胞对化疗的敏感性

阅读:3
作者:Tatyana S Nekova, Susanne Kneitz, Hermann Einsele, Gernot Stuhler

Abstract

miRNAs are critically implicated in the initiation process of and progression through cancerogenesis. The mechanisms, however, by which miRNAs interfere with the signalosomes of human cancer cells, are still obscure. We utilized the p53-mutated human keratinocyte cell line HACAT to investigate the biological significance and extent to which miRNAs regulate proliferation, cell growth, and apoptosis in transformed phenotypes. Silencing of the miRNA-processing enzyme Dicer1 resulted in cell cycle arrest at the G1/S border, along with restoration of CDK inhibitor p21(CIP)expression. Employing a cell cycle-wide phospho-proteomic approach, we detected neglectable changes in abundance and schedule of overall and cell cycle periodic protein expression despite cell cycle arrest of Dicer1-depleted cells. Instead, we found substantially delayed post-translational modifications of some, but not all, signaling nodes. Phospho-site-specific analyses revealed that pro-apoptotic information elicited by Myc, β-catenin, and other mitotic pathways early in G1 are absorbed and balanced by anti-apoptotic signaling from AKT and NFκB in Dicer1-competent cells. The absence of regulatory miRNAs, however, led to a substantial delay of anti-apoptotic signaling, leaving pro-apoptotic stress unbalanced in Dicer1-deprived cells. We here show that this temporal separation of pro- and anti-apoptotic signaling induced by inhibition of Dicer1 is synergistic and synthetic lethal to low-dose 5-FU chemotherapy in p53-mutated HACAT cells. The findings reported here contribute to the understanding of the complex interactions of miRNAs with the signalosom of transformed phenotypes and may help to design novel strategies to fight cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。