The Strengthened Photocatalytic NOx Removal of Composites Bi4O5Br2/BiPO4: The Efficient Regulation of Interface Carriers by Integrating a Wide-Bandgap Ornament

复合材料 Bi4O5Br2/BiPO4 强化光催化 NOx 去除:通过集成宽带隙装饰物有效调节界面载流子

阅读:13
作者:Fei Chang, Zhuoli Shi, Yibo Lei, Zhongyuan Zhao, Yingfei Qi, Penghong Yin, Shengwen Chen

Abstract

A series of binary composites Bi4O5Br2/BiPO4 (PBX) was fabricated through a simple mechanical ball milling protocol. Relevant microstructural, morphological, and optical properties were thoroughly analyzed via various techniques. The integration of both components was confirmed to produce heterojunction domains at the phase boundaries. Upon exposure to visible light irradiation, the as-achieved PBX series possessed the reinforced photocatalytic NOx removal efficiencies and the weakened generation of toxic intermediate NO2 in comparison to both bare components, chiefly attributed to the efficient transport and separation of carriers and boosted production of superoxide radicals (·O2-) through the combination of a wide-bandgap ornament BiPO4 as an electron acceptor. In particular, the composite PB5 with the optimal phase composition exhibited the highest NOx removal of 40% with the lowest NO2 formation of 40 ppb among all tested candidates. According to the band structures' estimation and reactive species' detection, a reasonable mechanism was ultimately proposed to describe the migration of charge carriers and the enhancement of photocatalytic performance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。