beta-Adrenergic stimulation modulates Ca2+- and voltage-dependent inactivation of L-type Ca2+ channel currents in guinea-pig ventricular myocytes

β-肾上腺素能刺激调节豚鼠心室肌细胞中 Ca2+ 和电压依赖性 L 型 Ca2+ 通道电流的失活

阅读:7
作者:Ian Findlay

Abstract

The objective of this study was to examine the effect of beta-adrenergic stimulation upon voltage- and Ca2+-induced inactivation of native cardiac L-type Ca2+ channels. Whole-cell currents were recorded from guinea-pig isolated ventricular myocytes. Total and voltage-dependent inactivation was separated by replacing extracellular Ca2+ with Mg2+. L-type Ca2+ channel behaviour was monitored with outward Ca2+ channel currents. First, the voltage dependence of inactivation was studied at fixed times (50 and 1000 ms) after activation. This showed that under control conditions Ca2+ contributed little to inactivation. In isoproterenol (isoprenaline), voltage-dependent inactivation was markedly reduced and Ca2+ contributed largely to total inactivation. Second, the time dependence of inactivation was studied at a fixed voltage (+10 mV). In control conditions the fast phase of inactivation (tau(f) approximately 15 ms) was reduced to the same extent by ryanodine (tau(f) approximately 30 ms) and the absence of Ca2+ (tau(f) approximately 30 ms) while the slow phase of inactivation (tau(s) approximately 70 ms) was reduced by ryanodine (tau(s) approximately 160 ms) and further reduced in the absence of Ca2+ (tau(s) approximately 300 ms). In isoproterenol, biphasic inactivation of Ca2+ currents (tau(f) approximately 4 ms, tau(s) approximately 60 ms) was replaced by a single slow (tau approximately 450 ms) phase of inactivation in the absence of Ca2+. It is concluded that, under control conditions Ca2+ channel current decay is largely dominated by rapid voltage-dependent inactivation, while in isoproterenol this is replaced by Ca2+-induced inactivation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。