Network Pharmacology Analysis, Molecular Docking, and In Vitro Verification Reveal the Action Mechanism of Prunella vulgaris L. in Treating Breast Cancer

网络药理学分析、分子对接及体外验证揭示夏枯草治疗乳腺癌的作用机制

阅读:4
作者:Haotian Bai, Rui Wang, Yalan Li, Xiao Liang, Junhao Zhang, Na Sun, Jing Yang

Background

Prunella vulgaris L. is effective in the treatment of breast cancer (BRCA); however, the underlying mechanism is still unclear. The

Conclusion

Synergistic effects of multiple components, targets, and pathways on the anti-BRCA activity of P. vulgaris could provide a theoretical basis for further study on its complex anti-BRCA mechanism.

Methods

Active components and action targets of P. vulgaris were determined using the TCMSP™, SwissTarget Prediction™, and TargetNet™ databases. GeneCards™ and OMIM™ provided BRCA targets. After obtaining common targets, a protein-protein interaction (PPI) network was constructed using the STRING™ database, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted using the Xiantao™ academic database. Cytoscape™ was used to construct "single drug-disease-component-target" and "single drug-disease-component-target-pathway" networks. The Human Protein Atlas™ was used to determine protein expression levels in BRCA cell lines. AutoDock tools™ were used to carry out molecular docking for the first 10 targets of quercetin and the PPI network. Finally, the abovementioned

Results

We obtained 11 active components, 198 targets, and 179 common targets, including DUOX2, MET, TOP2A, and ERBB3. The results of KEGG pathway analysis screened 188 related signaling pathways and indicated the potential key role of PI3K-Akt and MAPK signaling pathways in the antibreast cancer process of P. vulgaris. The results of molecular docking showed that the first 10 targets of quercetin interacted well with the protein network. Cell experiments showed that quercetin effectively inhibited the proliferation of MDA-MB-231 cells by regulating apoptosis and cell cycle, which may be partly related to the MAPK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。