γ-glutamylcysteine ethyl ester protects cerebral endothelial cells during injury and decreases blood-brain barrier permeability after experimental brain trauma

γ-谷氨酰半胱氨酸乙酯在损伤过程中保护脑内皮细胞并降低实验性脑损伤后的血脑屏障通透性

阅读:8
作者:Josephine Lok, Wendy Leung, Song Zhao, Stefanie Pallast, Klaus van Leyen, Shuzhen Guo, Xiaoying Wang, Ayfer Yalcin, Eng H Lo

Abstract

Oxidative stress is a pathway of injury that is common to almost all neurological conditions. Hence, methods to scavenge radicals have been extensively tested for neuroprotection. However, saving neurons alone may not be sufficient in treating CNS disease. In this study, we tested the cytoprotective actions of the glutathione precursor gamma-glutamylcysteine ethyl ester (GCEE) in brain endothelium. First, oxidative stress was induced in a human brain microvascular endothelial cell line by exposure to H(2)O(2). Addition of GCEE significantly reduced formation of reactive oxygen species, restored glutathione levels which were reduced in the presence of H(2)O(2), and decreased cell death during H(2)O(2)-mediated injury. Next, we asked whether GCEE can also protect brain endothelial cells against oxygen-glucose deprivation (OGD). As expected, OGD disrupted mitochondrial membrane potentials. GCEE was able to ameliorate these mitochondrial effects. Concomitantly, GCEE significantly decreased endothelial cell death after OGD. Lastly, our in vivo experiments using a mouse model of brain trauma show that post-trauma (10 min after controlled cortical impact) administration of GCEE by intraperitoneal injection results in a decrease in acute blood-brain barrier permeability. These data suggest that the beneficial effects of GCEE on brain endothelial cells and microvessels may contribute to its potential efficacy as a neuroprotective agent in traumatic brain injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。