Escinosomes: Safe and Successful Nanovesicles to Deliver Andrographolide by a Subcutaneous Route in a Mice Model of Oxaliplatin-Induced Neuropathy

鞘氨醇小体:在奥沙利铂诱发的神经病变小鼠模型中,安全成功地通过皮下途径输送穿心莲内酯的纳米囊泡

阅读:10
作者:Giulia Vanti, Michela Capizzi, Lorenzo Di Cesare Mannelli, Elena Lucarini, Maria Camilla Bergonzi, Carla Ghelardini, Anna Rita Bilia

Abstract

Andrographolide (AG) is a natural diterpene lactone endowed with considerable therapeutic potential for treating numerous diseases, including neurological disorders, but its low aqueous solubility and scarce bioavailability limit its clinical use. To overcome this problem, AG was encapsulated in escinosomes, special nanovesicles made of escin (ESN), a natural saponin, and phosphatidylcholine. Escinosomes loaded with AG had an average size of 164.7 ± 13.30 nm, optimal polydispersity index (0.190 ± 0.0890) and high ζ-potential (-35.4 ± 0.451 mV), and significantly loaded the active substance-the encapsulation efficiency of AG was about 88%. Escinosomes allowed the prolonged release of AG over time, without burst effects-about 85% AG was released after 24 h. Morphological analysis by cryo-transmission electron microscopy showed nanovesicles with a spherical shape, unilamellar and oligolamellar structures, and dimensions in agreement with those measured by dynamic light scattering. In addition, stability studies were performed on AG-loaded escinosomes stored for one month at 4 °C. The pain-relieving efficacy of these nanovesicles was tested in a rat model of oxaliplatin-induced neuropathy. AG-loaded escinosomes, subcutaneously administered, effectively reduced the thermal allodynia characteristic of chemotherapy-induced neuropathy, enhancing and prolonging the effect of the natural compound. Overall, AG-loaded escinosomes were found to be excellent for loading AG, physically and chemically stable for one-month storage, and with controlled-release properties, making the formulation an ideal pharmacological approach for persistent pain treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。