Trimetaphosphate Activates Prebiotic Peptide Synthesis across a Wide Range of Temperature and pH

三偏磷酸盐可在很宽的温度和 pH 范围内激活益生元肽的合成

阅读:6
作者:Izabela Sibilska, Yu Feng, Lingjun Li, John Yin

Abstract

The biochemical activation of amino acids by adenosine triphosphate (ATP) drives the synthesis of proteins that are essential for all life. On the early Earth, before the emergence of cellular life, the chemical condensation of amino acids to form prebiotic peptides or proteins may have been activated by inorganic polyphosphates, such as tri metaphosphate (TP). Plausible volcanic and other potential sources of TP are known, and TP readily activates amino acids for peptide synthesis. But de novo peptide synthesis also depends on pH, temperature, and processes of solvent drying, which together define a varied range of potential activating conditions. Although we cannot replay the tape of life on Earth, we can examine how activator, temperature, acidity and other conditions may have collectively shaped its prebiotic evolution. Here, reactions of two simple amino acids, glycine and alanine, were tested, with or without TP, over a wide range of temperature (0-100 °C) and acidity (pH 1-12), while open to the atmosphere. After 24 h, products were analyzed by HPLC and mass spectrometry. In the absence of TP, glycine and alanine readily formed peptides under harsh near-boiling temperatures, extremes of pH, and within dry solid residues. In the presence of TP, however, peptides arose over a much wider range of conditions, including ambient temperature, neutral pH, and in water. These results show how polyphosphates such as TP may have enabled the transition of peptide synthesis from harsh to mild early Earth environments, setting the stage for the emergence of more complex prebiotic chemistries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。