Definitive Screening Design and Artificial Neural Network for Modeling a Rapid Biodegradation of Date Palm Fronds by a New Trichoderma sp. PWN6 into Citric Acid

确定性筛选设计和人工神经网络用于模拟新木霉菌 PWN6 将椰枣树叶快速生物降解为柠檬酸

阅读:6
作者:Maha S Elsayed, Noha M Eldadamony, Salma S T Alrdahe, WesamEldin I A Saber

Abstract

Generally, the bioconversion of lignocellulolytics into a new biomolecule is carried out through two or more steps. The current study used one-step bioprocessing of date palm fronds (DPF) into citric acid as a natural product, using a pioneer strain of Trichodermaharzianum (PWN6) that has been selected from six tested isolates based on the highest organic acid (OA) productivity (195.41 µmol/g), with the lowest amount of the released glucose. Trichoderma sp. PWN6 was morphologically and molecularly identified, and the GenBank accession number was MW78912.1. Both definitive screening design (DSD) and artificial neural network (ANN) were applied, for the first time, for modeling the bioconversion process of DPF. Although both models are capable of making accurate predictions, the ANN model outperforms the DSD model in terms of OA production, as ANN is characterized by a higher value of R2 (0.963) and validation R2 (0.967), and lower values of the RMSE (13.44), MDA (11.06), and SSE (9749.5). Citric acid was the only identified OA as was confirmed by GC-MS and UPLC, with a total of 1.5%. In conclusion, DPF together with T. harzianum PWN6 is considered an excellent new combination for citric acid biosynthesis, after modeling with artificial intelligence procedure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。