Cortical acetylcholine dynamics are predicted by cholinergic axon activity and behavior state

皮质乙酰胆碱动力学由胆碱能轴突活动和行为状态预测

阅读:7
作者:Erin Neyhart, Na Zhou, Brandon R Munn, Robert G Law, Cameron Smith, Zakir H Mridha, Francisco A Blanco, Guochuan Li, Yulong Li, Matthew J McGinley, James M Shine, Jacob Reimer

Abstract

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。