Conformations of a Low-Complexity Protein in Homogeneous and Phase-Separated Frozen Solutions

低复杂度蛋白质在均质相分离冷冻溶液中的构象

阅读:9
作者:C Blake Wilson, Myungwoon Lee, Wai-Ming Yau, Robert Tycko

Significance

Liquid-liquid phase separation (LLPS) in solutions of proteins with intrinsically disordered domains has attracted recent attention because of its relevance to multiple biological processes and its inherent interest from the standpoint of protein biophysics. The high protein concentrations and abundant intermolecular interactions within protein-rich, phase-separated "droplets" suggests that conformational distributions of intrinsically disordered proteins may differ in homogeneous and phase-separated solutions. To investigate whether detectable differences exist, we performed experiments on the low-complexity domain of the FUS protein (FUS-LC) in which FUS-LC solutions were first equilibrated at temperatures well above or well below their LLPS transition temperatures, then rapidly frozen and examined at very low temperatures by solid state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data for homogeneous and phase-separated frozen solutions of FUS-LC were found to be nearly identical, showing that LLPS is not accompanied by substantial changes in the local conformational distributions of this intrinsically disordered protein.

Statement of significance

Liquid-liquid phase separation (LLPS) in solutions of proteins with intrinsically disordered domains has attracted recent attention because of its relevance to multiple biological processes and its inherent interest from the standpoint of protein biophysics. The high protein concentrations and abundant intermolecular interactions within protein-rich, phase-separated "droplets" suggests that conformational distributions of intrinsically disordered proteins may differ in homogeneous and phase-separated solutions. To investigate whether detectable differences exist, we performed experiments on the low-complexity domain of the FUS protein (FUS-LC) in which FUS-LC solutions were first equilibrated at temperatures well above or well below their LLPS transition temperatures, then rapidly frozen and examined at very low temperatures by solid state nuclear magnetic resonance (ssNMR) spectroscopy. The ssNMR data for homogeneous and phase-separated frozen solutions of FUS-LC were found to be nearly identical, showing that LLPS is not accompanied by substantial changes in the local conformational distributions of this intrinsically disordered protein.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。