Characteristics of human CD34+ cells exposed to ionizing radiation under cytokine-free conditions

无细胞因子条件下暴露于电离辐射的人类 CD34+ 细胞的特征

阅读:4
作者:Junya Ishikawa, Naoki Hayashi, Masaru Yamaguchi, Satoru Monzen, Ikuo Kashiwakura

Abstract

To clarify the mechanisms underlying radiation-induced hematopoietic stem cell death, we investigated the effects of excessive ionizing radiation on the clonogenic potential of CD34(+) cells obtained from human umbilical cord blood under cytokine-free conditions. The CD34(+) cells were X-ray-irradiated (up to 2 Gy) and were cultured for 0-48 h under cytokine-free conditions. At various time-points, the CD34(+) cells were investigated for survival, clonogenic potential and the generation of mitochondrial superoxide. At 12 h after X-ray irradiation, the number of viable cells had decreased to ∼70-80% compared with the 0-h non-irradiated control, whereas the clonogenic potential in the X-ray-irradiated cells had decreased to ∼50%-60% compared with the 0-h non-irradiated control. Furthermore, significant generation of mitochondrial superoxide was observed at 6 h, and reached a maximum value between 12 and 24 h after X-ray irradiation. However, no significant differences were observed between non-irradiated and X-ray-irradiated cells in terms of the generation of reactive oxygen species or in the intracellular mitochondrial contents. In addition, a cDNA microarray analysis showed that the majority of the altered genes in the CD34(+) cells at 6 h after X-ray irradiation were apoptosis-related genes. These results suggest the possibility that the elimination of the clonogenic potentials of CD34(+) cells involves the generation of mitochondrial superoxide induced by ionizing radiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。