Inhibition of Hippocampal Neuronal Ferroptosis by Liproxstatin-1 Improves Learning and Memory Function in Aged Mice with Perioperative Neurocognitive Dysfunction

Liproxstatin-1 抑制海马神经元铁凋亡可改善围手术期神经认知功能障碍老年小鼠的学习和记忆功能

阅读:2
作者:Liurong Lin #, Xin Ling #, Ting Chen #, Qian Zhou, Jinghao Huang, Linshen Huang, Xianzhong Lin, Lanying Lin

Background

Perioperative neurocognitive disorders (PND) are common in elderly patients after surgery, leading to long-term cognitive decline and reduced quality of life. The mechanisms are unclear, but ferroptosis, a key cell death pathway, may be involved in the disruption of brain homeostasis during perioperative stress.

Conclusion

The results of this study suggest that isoflurane-induced ferroptosis may play an important role in the pathologic progression of PND. The application of liproxstatin-1, a lipid peroxidation inhibitor, provides a new potential therapeutic target for perioperative neuroprotection.

Methods

In this study, we used the SAM-P8 mouse model to simulate brain aging and observe isoflurane-induced ferroptosis. Forty 8-month-old SAM-P8 mice were divided into four groups: control (CON), perioperative cognitive dysfunction (PND), PND with Liproxstatin-1 intervention (PND+Lip-1), and Liproxstatin-1 control (Lip-1). After 3% isoflurane anesthesia in the PND group, the PND+Lip-1 group received daily intrathecal Liproxstatin-1 injections for five days. Behavioral tests assessed spatial learning and memory. Nissl staining, transmission electron microscopy (TEM), FJB (Fluoro-Jade B), Western Blot (WB), and enzyme-linked immunosorbent assay (ELISA) evaluated neuronal morphology and levels of iron metabolism and lipid peroxidation markers.

Results

Behavioral tests indicated a decline in learning and memory function in the PND mice. Liproxstatin-1 treatment improved cognitive performance, restored normal neuron ratios, and alleviated mitochondrial damage. In the PND group, increased Cluster of Differentiation 71 (CD71) and decreased Ferroportin 1 (FPN1) and Glutathione Peroxidase 4 (GPx4) indicated ferroptosis activation, while Liproxstatin-1 normalized these markers, reduced ferrous ion concentration, Malondialdehyde (MDA), Reactive Oxygen Species (ROS), and 4-Hydroxy-2-nonenal (4-HNE) levels, and decreased Interleukin-6 (IL-6), showing anti-inflammatory effects.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。