Characterizing Extracellular Vesicles Generated from the Integra CELLine Culture System and Their Endocytic Pathways for Intracellular Drug Delivery

表征 Integra CELLine 培养系统产生的细胞外囊泡及其用于细胞内药物输送的内吞途径

阅读:6
作者:Tianjiao Geng, Lei Tian, Song Yee Paek, Euphemia Leung, Lawrence W Chamley, Zimei Wu

Abstract

Extracellular vesicles (EVs) have attracted great attention as promising intracellular drug delivery carriers. While the endocytic pathways of small EVs (sEVs, <200 nm) have been reported, there is limited understanding of large EVs (lEVs, >200 nm), despite their potential applications for drug delivery. Additionally, the low yield of EVs during isolation remains a major challenge in their application. Herein, we aimed to compare the endocytic pathways of sEVs and lEVs using MIA PaCa-2 pancreatic cancer cell-derived EVs as models and to explore the efficiency of their production. The cellular uptake of EVs by MIA PaCa-2 cells was assessed and the pathways were investigated with the aid of endocytic inhibitors. The yield and protein content of sEVs and lEVs from the Integra CELLine culture system and the conventional flasks were compared. Our findings revealed that both sEVs and lEVs produced by the Integra CELLine system entered their parental cells via multiple routes, including caveolin-mediated endocytosis, clathrin-mediated endocytosis, and actin-dependent phagocytosis or macropinocytosis. Notably, caveolin- and clathrin-mediated endocytosis were more prominent in the uptake of sEVs, while actin-dependent phagocytosis and macropinocytosis were significant for both sEVs and lEVs. Compared with conventional flasks, the Integra CELLine system demonstrated a 9-fold increase in sEVs yield and a 6.5-fold increase in lEVs yield, along with 3- to 4-fold higher protein content per 1010 EVs. Given that different endocytic pathways led to distinct intracellular trafficking routes, this study highlights the unique potentials of sEVs and lEVs for intracellular cargo delivery. The Integra CELLine proves to be a highly productive and cost-effective system for generating EVs with favourable properties for drug delivery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。