PQQ ameliorates skeletal muscle atrophy, mitophagy and fiber type transition induced by denervation via inhibition of the inflammatory signaling pathways

PQQ 通过抑制炎症信号通路改善失神经支配引起的骨骼肌萎缩、线粒体自噬和纤维类型转变

阅读:6
作者:Wenjing Ma, Ru Zhang, Ziwei Huang, Qiuyu Zhang, Xiaoying Xie, Xiaoming Yang, Qi Zhang, Hua Liu, Fei Ding, Jianwei Zhu, Hualin Sun

Background

Skeletal muscle atrophy involves and requires widespread changes in skeletal muscle gene expression and signaling pathway, resulting in excessive loss of muscle mass and strength, which is associated with poor prognosis and the decline of life quality in several diseases. However, the treatment of skeletal muscle atrophy remains an unresolved challenge to this day. The

Conclusions

These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.

Methods

After denervation, mice were injected intraperitoneally with saline plus PQQ (5 mg/kg/d) or saline only for 14 days. The level of inflammatory cytokines in tibialis anterior (TA) muscles was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), and the level of signaling proteins of Janus kinase 2/signal transduction and activator of transcription 3 (Jak2/STAT3), TGF-β1/Smad3, JNK/p38 MAPK, and nuclear factor κB (NF-κB) signaling pathway were detected by Western blot. The skeletal muscle atrophy was evaluated by muscle wet weight ratio and cross-sectional areas (CSAs) of myofibers. The mitophagy was observed through transmission electron microscopy (TEM) analysis, and muscle fiber type transition was analyzed through fast myosin skeletal heavy chain antibody staining.

Results

The proinflammatory cytokines IL-6, IL-1β and TNF-α were largely induced in TA muscles after sciatic nerve transection. PQQ can significantly reverse this phenomenon, as evidenced by the decreased levels of proinflammatory cytokines IL-6, IL-1β and TNF-α. Moreover, PQQ could significantly attenuate the signal activation of Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB in skeletal muscles after sciatic nerve transection. Furthermore, PQQ alleviated skeletal muscle atrophy, mitigated mitophagy and inhibited slow-to-fast muscle fiber type transition. Conclusions: These results suggested that PQQ could attenuate denervation-induced skeletal muscle atrophy, mitophagy and fiber type transition through suppressing the Jak2/STAT3, TGF-β1/Smad3, JNK/p38 MAPK, and NF-κB signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。