The association between vitamin D receptor gene polymorphism FokI and type 2 diabetic kidney disease and its molecular mechanism: a case control study

维生素D受体基因多态性FokI与2型糖尿病肾病的关联及其分子机制:病例对照研究

阅读:7
作者:Yaping Zhao #, Zehui Liu #, Shiyu Feng, Rong Yang, Zhenqin Ran, Rong Zhu, Lijuan Ma, Zizhou Wang, Lixin Chen, Rui Han

Background

The role of the vitamin D receptor single nucleotide polymorphism FOKI (VDR-FOKI) (rs2228570) in genetic susceptibility to type 2 diabetic kidney disease (T2DKD) remains uncertain. This study investigated the relationship between VDR-FOKI and T2DKD within the Chinese Plateau Han population and analyzed the underlying mechanisms.

Conclusions

The ff genotype of VDR-FokI is a risk factor for T2DKD, and the potential mechanism may be related to ferroptosis. However, It is not associated with T2DM or the progression of T2DKD.

Methods

A total of 316 subjects were enrolled, including 44 healthy adults, 114 individuals with type 2 diabetes mellitus (T2DM), and 158 patients with T2DKD. According to the 2023 American Diabetes Association Diabetes Guidelines, patients with T2DKD were categorized into low-medium-risk and high-risk groups based on estimates of glomerular filtration rate and urinary albumin-to-creatinine ratio. The VDR-FokI genotypes of all participants were identified using the Taqman probe and classified as homozygous mutant genotypes (C/C or FF), heterozygous mutant genotypes (C/T or Ff), and homozygous wild genotypes (T/T or ff). Plasma levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase activity (SOD) were assessed in T2DKD patients with FF and ff genotypes. Additionally, the levels of plasma VDR, GPX4, and P53 were determined using ELISA, while the relative expressions of VDR mRNA, GPX4 mRNA, and TP53 mRNA in whole blood were measured by RT-qPCR.

Results

The T2DM patients with the ff genotype exhibited a 2.93-fold increased likelihood of developing T2DKD compared to those with the FF genotype (ORadjusted = 2.93; 95% CI: 1.142-7.513). Additionally, they were 2.01 times more likely to develop T2DKD than individuals with the FF and Ff genotypes (ORadjusted = 2.01; 95% CI: 1.008-4.006). However, no significant differences in VDR-FokI genotype distribution were observed between the healthy control group and the T2DM group, as well as between the low-medium-risk and high-risk groups of T2DKD. Furthermore, T2DKD patients with the ff genotype had significantly higher plasma levels of MDA compared to those with the FF genotype. In contrast, plasma GSH and SOD content was significantly lower in the ff genotype patients (P < 0.05). Additionally, the GPX4 concentration in ff genotype patients was significantly lower than in FF genotype patients [14.88 (11.32,22.39) vs. 12.76 (8.55,13.75), P = 0.037]. Nevertheless, no statistically significant difference was observed in the expression of VDRmRNA, GPX4mRNA, TP53mRNA, plasma VDR, and plasma P53. Conclusions: The ff genotype of VDR-FokI is a risk factor for T2DKD, and the potential mechanism may be related to ferroptosis. However, It is not associated with T2DM or the progression of T2DKD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。