Mechanism of the cadherin-catenin F-actin catch bond interaction

钙粘蛋白-连环蛋白 F-肌动蛋白捕获键相互作用的机制

阅读:6
作者:Amy Wang, Alexander R Dunn, William I Weis

Abstract

Mechanotransduction at cell-cell adhesions is crucial for the structural integrity, organization, and morphogenesis of epithelia. At cell-cell junctions, ternary E-cadherin/β-catenin/αE-catenin complexes sense and transmit mechanical load by binding to F-actin. The interaction with F-actin, described as a two-state catch bond, is weak in solution but is strengthened by applied force due to force-dependent transitions between weak and strong actin-binding states. Here, we provide direct evidence from optical trapping experiments that the catch bond property principally resides in the αE-catenin actin-binding domain (ABD). Consistent with our previously proposed model, the deletion of the first helix of the five-helix ABD bundle enables stable interactions with F-actin under minimal load that are well described by a single-state slip bond, even when αE-catenin is complexed with β-catenin and E-cadherin. Our data argue for a conserved catch bond mechanism for adhesion proteins with structurally similar ABDs. We also demonstrate that a stably bound ABD strengthens load-dependent binding interactions between a neighboring complex and F-actin, but the presence of the other αE-catenin domains weakens this effect. These results provide mechanistic insight to the cooperative binding of the cadherin-catenin complex to F-actin, which regulate dynamic cytoskeletal linkages in epithelial tissues.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。