Resveratrol-Maltol and Resveratrol-Thiophene Hybrids as Cholinesterase Inhibitors and Antioxidants: Synthesis, Biometal Chelating Capability and Crystal Structure

白藜芦醇-麦芽酚和白藜芦醇-噻吩杂化物作为胆碱酯酶抑制剂和抗氧化剂:合成、生物金属螯合能力和晶体结构

阅读:5
作者:Milena Mlakić, Lajos Fodor, Ilijana Odak, Ottó Horváth, Marija Jelena Lovrić, Danijela Barić, Valentina Milašinović, Krešimir Molčanov, Željko Marinić, Zlata Lasić, Irena Škorić

Abstract

New resveratrol-thiophene and resveratrol-maltol hybrids were synthesized as cholinesterase inhibitors and antioxidants. As with photostability experiments, biological tests also found remarkable differences in the properties and behavior of thiophene and maltol hybrids. While resveratrol-thiophene hybrids have excellent inhibitory and antioxidant properties (similar to the activity of reference drug galantamine), maltols have been proven to be weaker inhibitors and antioxidants. The molecular docking of selected active ligands gave insight into the structures of docked enzymes. It enabled the identification of interactions between the ligand and the active site of both cholinesterases. The maltols that proved to be active cholinesterase inhibitors were able to coordinate Fe3+ ion, forming complexes of 1:1 composition. Their formation constants, determined by spectrophotometry, are very similar, lgK = 11.6-12.6, suggesting that Fe3+ binds to the common hydroxy-pyranone moiety and is hardly affected by the other aromatic part of the ligand. Accordingly, the characteristic bands in their individual absorption spectra are uniformly red-shifted relative to those of the free ligands. The crystal structures of two new resveratrol-maltol hybrids were recorded, giving additional information on the molecules' intermolecular hydrogen bonds and packing. In this way, several functionalities of these new resveratrol hybrids were examined as a necessary approach to finding more effective drugs for complicated neurodegenerative diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。