A first-principles-based high fidelity, high throughput approach for the design of high entropy alloys

基于第一性原理的高保真度、高通量高熵合金设计方法

阅读:7
作者:V Sorkin, Z G Yu, S Chen, Teck L Tan, Z H Aitken, Y W Zhang

Abstract

Here, we present a preselected small set of ordered structures (PSSOS) method, a first principles-based high fidelity (HF), high throughput (HT) approach, for fast screening of the large composition space of high entropy alloys (HEAs) to select the most energetically stable, single-phase HEAs. Taking quinary AlCoCrFeNi HEA as an example system, we performed PSSOS calculations on the formation energies and mass densities of 8801 compositions in both FCC and BCC lattices and selected five most stable FCC and BCC HEAs for detailed analysis. The calculation results from the PSSOS approach were compared with existing experimental and first-principles data, and the good agreement was achieved. We also compared the PSSOS with the special quasi-random structures (SQS) method, and found that with a comparable accuracy, the PSSOS significantly outperforms the SQS in efficiency, making it ideal for HF, HT calculations of HEAs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。