Post-translational regulation of the Drosophila circadian clock requires protein phosphatase 1 (PP1)

果蝇昼夜节律钟的翻译后调控需要蛋白磷酸酶 1 (PP1)

阅读:9
作者:Yanshan Fang, Sriram Sathyanarayanan, Amita Sehgal

Abstract

Phosphorylation is an important timekeeping mechanism in the circadian clock that has been closely studied at the level of the kinases involved but may also be tightly controlled by phosphatase action. Here we demonstrate a role for protein phosphatase 1 (PP1) in the regulation of the major timekeeping molecules in the Drosophila clock, TIMELESS (TIM) and PERIOD (PER). Flies with reduced PP1 activity exhibit a lengthened circadian period, reduced amplitude of behavioral rhythms, and an altered response to light that suggests a defect in the rising phase of clock protein expression. On a molecular level, PP1 directly dephosphorylates TIM and stabilizes it in both S2R(+) cells and clock neurons. However, PP1 does not act in a simple antagonistic manner to SHAGGY (SGG), the kinase that phosphorylates TIM, because the behavioral phenotypes produced by inhibiting PP1 in flies are different from those achieved by overexpressing SGG. PP1 also acts on PER, and TIM regulates the control of PER by PP1, although it does not affect PP2A action on PER. We propose a modified model for post-translational regulation of the Drosophila clock, in which PP1 is critical for the rhythmic abundance of TIM/PER while PP2A also regulates the nuclear translocation of TIM/PER.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。