Primary breast cancer cell culture yields intra-tumor heterogeneous subpopulations expressing exclusive patterns of receptor tyrosine kinases

原发性乳腺癌细胞培养产生肿瘤内异质亚群,表达受体酪氨酸激酶的独特模式

阅读:6
作者:José Esparza-López, Pier A Ramos-Elías, Andrea Castro-Sánchez, Leticia Rocha-Zavaleta, Elizabeth Escobar-Arriaga, Alejandro Zentella-Dehesa, Eucario León-Rodríguez, Heriberto Medina-Franco, María de Jesus Ibarra-Sánchez

Background

It has become evident that intra-tumor heterogeneity of breast cancer impact on several biological processes such as proliferation, migration, cell death and also might contribute to chemotherapy resistance. The expression of Receptor Tyrosine Kinases (RTKs) has not been analyzed in the context of intra-tumor heterogeneity in a primary breast cancer cell culture. Several subpopulations were isolated from the MBCDF (M serial-breast cancer ductal F line) primary breast cancer cells and were successfully maintained in culture and divided in two groups according to their morphology and RTKs expression pattern, and correlated with biological processes like proliferation, migration, anchorage-independent cell growth, and resistance to cytotoxic chemotherapy drugs and tyrosine kinase inhibitors (TKIs).

Conclusions

We demonstrated that subpopulations from MBCDF primary cell culture could be divided into two groups according to their morphology and a RTKs excluding-expression pattern. The differences observed in RTKs expression correlate with the biological characteristics and chemoresistance of each group. These results suggest that intra-tumor heterogeneity contributes to generate groups of subpopulations with a more aggressive phenotype within the tumor.

Methods

Subpopulations were isolated from MBCDF primary breast cancer cell culture by limiting dilution. RTKs and hormone receptors were examined by Western blot. Proliferation was measure by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT assay). Cell viability was evaluated by Crystal Violet. Migration was assessed using Boyden chambers. Anchorage-independent cell growth was evaluated by colony formation in soft agar.

Results

Several subpopulations were isolated from the MBCDF breast cancer cells that were divided into two groups according to their morphology. Analysis of RTKs expression pattern showed that HER1, HER3, c-Met and VEGFR2 were expressed exclusively in cells from group 1, but not in cells from group 2. PDGFR was expressed only in cells from group 2, but not in cells from group 1. HER2, HER4, c-Kit, IGF1-R were expressed in all subpopulations. Biological processes correlated with the RTKs expression pattern. Group 2 subpopulations present the highest rate of cell proliferation, migration and anchorage-independent cell growth. Analysis of susceptibility to chemotherapy drugs and TKIs showed that only Paclitaxel and Imatinib behaved differently between groups. Group 1-cells were resistant to both Paclitaxel and Imatinib. Conclusions: We demonstrated that subpopulations from MBCDF primary cell culture could be divided into two groups according to their morphology and a RTKs excluding-expression pattern. The differences observed in RTKs expression correlate with the biological characteristics and chemoresistance of each group. These results suggest that intra-tumor heterogeneity contributes to generate groups of subpopulations with a more aggressive phenotype within the tumor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。