In Vitro Antimicrobial Effects and Inactivation Mechanisms of 5,8-Dihydroxy-1,4-Napthoquinone

5,8-二羟基-1,4-萘醌的体外抗菌作用及灭活机制

阅读:6
作者:Seray Topçu, Mine Gül Şeker

Abstract

Naphthoquinones are an important class of natural organic compounds that have antimicrobial effects. However, the mechanisms of their action remain to be elucidated. Therefore, the antimicrobial activity of the chemically synthesized naphthoquinone derivative, 5,8-dihydroxy-1,4-naphthoquinone, was investigated in this study against 10 different microorganisms. Its inhibitory activity was evident against Bacillus cereus, Proteus vulgaris, Salmonella enteritidis, Staphylococcus epidermidis, S. aureus, and Candida albicans, and its MIC50 values were determined to be 14, 10, 6, 2, 4, 1.2, and <0.6 µg/mL, respectively. Moreover, the crystal violet uptake, TTC dehydrogenase activity, protein/DNA leakage, and DNA damage of the compound in these microorganisms were also investigated to reveal the antimicrobial mechanisms. In addition, scanning electron microscopy was used to detect physiological damage to the cell membrane of S. epidermidis, S. aureus, and C. albicans, which was most severe in the crystal violet uptake assay. The overall results showed that 5,8-dihydroxy-1,4-naphthoquinone exhibited its effects on S. aureus, S. epidermidis, and C. albicans by various mechanisms, especially membrane damage and membrane integrity disruption. It also caused DNA leakage and damage along with respiratory chain disruption (78%) in C. albicans. Similarly, it caused varying degrees of reduction in the respiratory activity of S. aureus (47%), S. epidermidis (16%), B. cereus (12%), S. enteritidis (9%), and P. vulgaris (8%). Therefore, 5,8-dihydroxy-1,4-naphthoquinone proved to be a very effective antifungal and antibacterial agent and could be considered a new potential drug candidate, inspiring further discoveries in these microorganisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。