Public RNA-seq data-based identification and functional analyses reveal that MXRA5 retains proliferative and migratory abilities of dental pulp stem cells

基于公共RNA-seq数据的鉴定和功能分析表明MXRA5保留了牙髓干细胞的增殖和迁移能力

阅读:5
作者:Kazuma Yoshida #, Shigeki Suzuki #, Hang Yuan, Akiko Sato, Shizu Hirata-Tsuchiya, Masahiro Saito, Satoru Yamada, Hideki Shiba

Abstract

Dental pulp stem cells (DPSC) usually remain quiescent in the dental pulp tissue; however, once the dental pulp tissue is injured, DPSCs potently proliferate and migrate into the injury microenvironment and contribute to immuno-modulation and tissue repair. However, the key molecules that physiologically support the potent proliferation and migration of DPSCs have not been revealed. In this study, we searched publicly available transcriptome raw data sets, which contain comparable (i.e., equivalently cultured) DPSC and mesenchymal stem cell data. Three data sets were extracted from the Gene Expression Omnibus database and then processed and analyzed. MXRA5 was identified as the predominant DPSC-enriched gene associated with the extracellular matrix. MXRA5 is detected in human dental pulp tissues. Loss of MXRA5 drastically decreases the proliferation and migration of DSPCs, concomitantly with reduced expression of the genes associated with the cell cycle and microtubules. In addition to the known full-length isoform of MXRA5, a novel splice variant of MXRA5 was cloned in DPSCs. Recombinant MXRA5 coded by the novel splice variant potently induced the haptotaxis migration of DPSCs, which was inhibited by microtubule inhibitors. Collectively, MXRA5 is a key extracellular matrix protein in dental pulp tissue for maintaining the proliferation and migration of DPSCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。