Self-Healing Hyaluronic Acid-based Hydrogel with miRNA140-5p Loaded MON-PEI Nanoparticles for Chondrocyte Regeneration: Schiff Base Self-Assembly Approach

载有 miRNA140-5p 的 MON-PEI 纳米粒子的自修复透明质酸基水凝胶用于软骨细胞再生:席夫碱自组装方法

阅读:9
作者:Wei Zhu, Han Wang, Bin Feng, Guangli Liu, Yixin Bian, Tianhao Zhao, Qi Wang, Xisheng Weng

Abstract

Articular cartilage defects present a significant therapeutic challenge due to the inherent avascular and aneural characteristics of cartilage tissue. Gene therapy has emerged as a promising strategy for cartilage regeneration, particularly through the use of functional RNA and biomaterial-assisted frameworks. In this study, an innovative gene-activated self-healing hydrogel is developed and fabricated for the controlled release of miR140-5p, a key regulator of cartilage regeneration. The hydrogel, crosslinked via UV radiation, is composed of aminated hyaluronic acid and a modified photosensitizer (NB). To enhance the scaffold's structural integrity and gene delivery efficiency, mineralized silk fibroin and miR140-5p-loaded MON-PEI nanoparticles are incorporated. These findings demonstrate that this novel hydrogel (miR140-5p-CaP@mSF-HA-NB) effectively encapsulates and releases miR140-5p, exhibits excellent biocompatibility, and promotes enhanced cartilage regeneration in both in vitro and in vivo models. Therefore, this gene-activated hydrogel holds significant potential for clinical applications in the treatment of articular cartilage defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。