In Vitro Evaluation and In Silico Calculations of the Antioxidant and Anti-Inflammatory Properties of Secondary Metabolites from Leonurus sibiricus L. Root Extracts

益母草根提取物次生代谢产物抗氧化和抗炎特性的体外评价和计算机模拟计算

阅读:5
作者:Anna Merecz-Sadowska, Przemysław Sitarek, Tomasz Kowalczyk, Marcin Palusiak, Marta Hoelm, Karolina Zajdel, Radosław Zajdel

Abstract

Leonurus sibiricus L. has great ethnobotanical and ethnomedicinal significance. This study aimed to assess the antioxidant and anti-inflammatory properties of Leonurus sibiricus L. transgenic roots extracts transformed by Rhizobium rhizogenes, with and without the AtPAP1 transcriptional factor. The study determined the total phenolic and flavonoid contents, as well as in vitro antioxidant assays, including hydrogen peroxide and nitric oxide scavenging activity. In addition, in silico computational studies and molecular docking were conducted to evaluate the antioxidant and anti-inflammatory potential of the identified compounds. The ligands were docked to NADPH oxidase, cyclooxygenase 2,5-lipoxygenase, inducible nitric synthase and xanthine oxidase: enzymes involved in the inflammatory process. The total phenolic and flavonoid contents ranged from 85.3 ± 0.35 to 57.4 ± 0.15 mg/g GAE/g and 25.6 ± 0.42 to 18.2 ± 0.44 mg/g QUE/g in hairy root extracts with and without AtPAP1, respectively. H2O2 scavenging activity (IC50) was found to be 29.3 µg/mL (with AtPAP1) and 37.5 µg/mL (without AtPAP1 transcriptional factor), and NO scavenging activity (IC50) was 48.0 µg/mL (with AtPAP1) and 68.8 µg/mL (without AtPAP1 transcriptional factor). Leonurus sibiricus L. transformed root extracts, both with and without AtPAP1, are a source of phytochemicals belonging to different classes of molecules, such as flavonoids (catechin and rutin), phenolic compounds (caffeic acid, coumaric acid, chlorogenic acid, ferulic acid) and phenylpropanoid (verbascoside). Among the radicals formed after H removal from the different -OH positions, the lowest bond dissociation enthalpy was observed for rutin (4'-OH). Rutin was found to bind with cyclooxygenase 2, inducible nitric synthases and xanthine oxidase, whereas chlorogenic acid demonstrated optimal binding with 5-lipoxygenase. Therefore, it appears that the Leonurus sibiricus L. transformed root extract, both with and without the AtPAP1 transcriptional factor, may serve as a potential source of active components with antioxidant and anti-inflammatory potential; however, the extract containing AtPAP1 demonstrates superior activities. These properties could be beneficial for human health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。