Activation of metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus laminaris of the chick

代谢型谷氨酸受体的激活提高了小鸡层状核中突触前机制的巧合检测的准确性

阅读:5
作者:Hiroko Okuda, Rei Yamada, Hiroshi Kuba, Harunori Ohmori

Abstract

Interaural time difference (ITD) is a major cue for localizing a sound source and is processed in the nucleus laminaris (NL) in birds. Coincidence detection (CD) is a crucial step for processing ITD and critically depends on the size and time course of excitatory postsynaptic potentials (EPSPs). Here, we investigated a role of metabotropic glutamate receptors (mGluRs) in the regulation of EPSP amplitude and CD in the NL of chicks. A non-specific agonist of mGluRs ((±)-1-aminocyclopentane-trans-1,3-dicarboxylic acid; t-ACPD) reduced the amplitude and extent of depression of excitatory postsynaptic currents (EPSCs) during a stimulus train, while the paired pulse ratio and coefficient of variation of EPSC amplitude were increased. In contrast, the amplitudes of spontaneous EPSCs were not affected, but the frequency was reduced. Thus, the effects of t-ACPD were presynaptic and reduced the release of neurotransmitter from terminals in the NL. Expression of group II mGluRs was graded along the tonotopic axis and was stronger towards the low frequency region in the NL. Both group II (DCG-IV) and group III (l-AP4) specific agonists reduced EPSC amplitude by presynaptic mechanisms, and the reduction was larger in the low frequency region; however, we could not find any effects of group I-specific agonists on EPSCs. The reduced EPSP amplitude in DCG-IV improved CD. A specific antagonist of group II mGluRs (LY341495) increased the amplitude of both EPSCs and EPSPs and enhanced the depression during a stimulus train, indicating constitutive activation of mGluRs in the NL. These observations indicate that mGluRs may work as autoreceptors and regulate EPSP size to improve CD in the NL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。