Conclusions
This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.
Methods
Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment.
Results
Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 ± 631 vs 3087 ± 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 ± 580 to 1312 ± 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 ± 1.6 to 24.4 ± 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 ± 2.8 to 22.5 ± 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added. Conclusions: This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs.
