HepaRG cells undergo increased levels of post-differentiation patterning in physiologic conditions when maintained as 3D cultures in paper-based scaffolds

当 HepaRG 细胞在纸基支架中以 3D 形式培养时,在生理条件下其分化后模式的水平会提高

阅读:5
作者:Thomas J Diprospero, Lauren G Brown, Trevor D Fachko, Matthew R Lockett

Abstract

Monolayer cultures of hepatocytes lack many aspects of the liver sinusoid, including a tissue-level organization that results from extracellular matrix interactions and gradients of soluble molecules that span from the portal triad to the central vein. We measured the activity and transcript levels of drug-metabolizing enzymes in HepaRG cells maintained in three different culture configurations: as monolayers, seeded onto paper scaffolds that were pre-loaded with a collagen matrix, and when seeded directly into the paper scaffolds as a cell-laden gel. Drug metabolism was significantly decreased in the presence of the paper scaffolds compared to monolayer configurations when cells were exposed to standard culture conditions. Despite this decreased function, transcript levels suggest the cells undergo increased polarization and adopt a biliary-like character in the paper scaffolds, including the increased expression of transporter proteins (e.g., ABCB11 and SLOC1B1) and the KRT19 cholangiocyte marker. When exposed to representative periportal or perivenous culture conditions, we observed in vivo zonal-like patterns, including increased cytochrome P450 (CYP) activity and transcript levels in the perivenous condition. This increased CYP activity is more pronounced in the laden configuration, supporting the need to include multiple aspects of the liver microenvironment to observe the post-differentiation processing of hepatocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。