Comparative profiling of cellular gait on adhesive micropatterns defines statistical patterns of activity that underlie native and cancerous cell dynamics

粘附微图案上细胞步态的比较分析定义了原生细胞和癌细胞动力学背后的活动统计模式

阅读:4
作者:John C Ahn, Scott M Coyle

Abstract

Cell dynamics are powered by patterns of activity, but it is not straightforward to quantify these patterns or compare them across different environmental conditions or cell-types. Here we digitize the long-term shape fluctuations of metazoan cells grown on micropatterned fibronectin islands to define and extract statistical features of cell dynamics without the need for genetic modification or fluorescence imaging. These shape fluctuations generate single-cell morphological signals that can be decomposed into two major components: a continuous, slow-timescale meandering of morphology about an average steady-state shape; and short-lived "events" of rapid morphology change that sporadically occur throughout the timecourse. By developing statistical metrics for each of these components, we used thousands of hours of single-cell data to quantitatively define how each axis of cell dynamics was impacted by environmental conditions or cell-type. We found the size and spatial complexity of the micropattern island modulated the statistics of morphological events-lifetime, frequency, and orientation-but not its baseline shape fluctuations. Extending this approach to profile a panel of triple negative breast cancer cell-lines, we found that different cell-types could be distinguished from one another along specific and unique statistical axes of their behavior. Our results suggest that micropatterned substrates provide a generalizable method to build statistical profiles of cell dynamics to classify and compare emergent cell behaviors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。