Resurgent Na+ current in pyramidal neurones of rat perirhinal cortex: axonal location of channels and contribution to depolarizing drive during repetitive firing

大鼠嗅球周围皮质锥体神经元中 Na+ 电流复苏:通道的轴突定位及其对重复放电过程中去极化驱动的贡献

阅读:10
作者:Loretta Castelli, Gerardo Biella, Mauro Toselli, Jacopo Magistretti

Abstract

The perirhinal cortex (PRC) is a supra-modal cortical area that collects and integrates information originating from uni- and multi-modal neocortical regions and directed to the hippocampus. The mechanisms that underlie the specific excitable properties of the different PRC neuronal types are still largely unknown, and their elucidation may be important in understanding the integrative functions of PRC. In this study we investigated the expression and properties of resurgent Na(+) current (I(NaR)) in pyramidal neurones of rat PRC area 35 (layer II). Patch-clamp experiments in acute PRC slices were first carried out. A measurable I(NaR) was expressed by a large majority of neurones (31 out of 35 cells). I(NaR) appeared as an inward, slowly decaying current elicited upon step repolarization after depolarizations sufficient to induce nearly complete inactivation of the transient Na(+) current (I(NaT)). I(NaR) had a peak amplitude of approximately 2.5% that of I(NaT), and showed the typical biophysical properties also observed in other neuronal types (i.e. cerebellar Purkinje and granule cells), including a bell-shaped current-voltage relationship with a peak at approximately -40 mV, and a characteristic acceleration of activation and decay speed at potentials negative to -45 mV. Current-clamp experiments were then carried out in which repetitive action-potential discharge at various frequencies was induced with depolarizing current injection. The voltage signals thus obtained were then used as command waveforms for voltage-clamp recordings. These experiments showed that a Na(+) current identifiable as I(NaR) activates in the early interspike phase even at relatively high firing frequencies (20 Hz), thereby contributing to the depolarizing drive and possibly enhancing repetitive discharge. In acutely dissociated area 35 layer II neurones, as well as in nucleated patches from the same neurones, I(NaR) was never observed, despite the presence of typical I(NaT)s. Since in both preparations neuronal processes are lost, we carried out experiments of focal tetrodotoxin (TTX) application in slices to verify whether the channels responsible for I(NaR) are located in compartment(s) different from the soma. We found that TTX preferentially inhibited I(NaR) when applied close to the site of axon emergence from soma, whereas application to the apical pole of the soma had a significantly smaller effect on I(NaR). Our results indicate that in area 35 pyramidal cells I(NaR) is largely generated in the axon initial segment, where it may participate in setting the coding properties of these neurones.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。