Coincident Activation of Glutamate Receptors Enhances GABAA Receptor-Induced Ionic Plasticity of the Intracellular Cl--Concentration in Dissociated Neuronal Cultures

谷氨酸受体的同步激活增强了分离神经元培养中GABAA受体诱导的细胞内Cl-浓度的离子可塑性

阅读:7
作者:Lisa Halbhuber, Cécilia Achtner, Heiko J Luhmann, Anne Sinning, Werner Kilb

Abstract

Massive activation of γ-amino butyric acid A (GABAA) receptors during pathophysiological activity induces an increase in the intracellular Cl--concentration ([Cl-]i), which is sufficient to render GABAergic responses excitatory. However, to what extent physiological levels of GABAergic activity can influence [Cl-]i is not known. Aim of the present study is to reveal whether moderate activation of GABAA receptors mediates functionally relevant [Cl-]i changes and whether these changes can be augmented by coincident glutamatergic activity. To address these questions, we used whole-cell patch-clamp recordings from cultured cortical neurons [at days in vitro (DIV) 6-22] to determine changes in the GABA reversal potential (EGABA) induced by short bursts of GABAergic and/or synchronized glutamatergic stimulation. These experiments revealed that pressure-application of 10 short muscimol pulses at 10 Hz induced voltage-dependent [Cl-]i changes. Under current-clamp conditions this muscimol burst induced a [Cl-]i increase of 3.1 ± 0.4 mM (n = 27), which was significantly enhanced to 4.6 ± 0.5 mM (n = 27) when glutamate was applied synchronously with the muscimol pulses. The muscimol-induced [Cl-]i increase significantly attenuated the inhibitory effect of GABA, as determined by the GABAergic rheobase shift. The synchronous coapplication of glutamate pulses had no additional effect on the attenuation of GABAergic inhibition, despite the larger [Cl-]i transients under these conditions. In summary, these results indicate that moderate GABAergic activity can induce functionally relevant [Cl-]i transients, which were enhanced by coincident glutamate pulses. This ionic plasticity of [Cl-]i may contribute to short-term plasticity of the GABAergic system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。