How Uremic Toxins Alter Atorvastatin Disposition: Molecular Mechanisms of Inhibition of the Enzyme CYP3A4

尿毒症毒素如何改变阿托伐他汀的分布:抑制酶 CYP3A4 的分子机制

阅读:11
作者:Ashna Asim, Fen Wang, Dong Pu, Sisi Wang, Dian Wang, Wenwen Li, Feng Yu, Li Ji

Aims

To assess ways in which PBUTs alter the CYP450 enzymes in hepatocytes as well as the possible effects of specific PBUTs on the metabolism and excretion of atorvastatin (ATV). Study design: An experimental study.

Background

In uremic patients, the accumulation of gut-derived protein-bound uremic toxins (PBUTs) induces changes in the microenvironment of the patients, leading to changes in the elimination pattern of drugs. Aims: To assess ways in which PBUTs alter the CYP450 enzymes in hepatocytes as well as the possible effects of specific PBUTs on the metabolism and excretion of atorvastatin (ATV). Study design: An experimental study.

Conclusion

ATV metabolism could be significantly altered in the presence of uremic toxins, suggesting a downregulated effect on the ATV uptake, possibly through Oatp1b1, and also on the activity of CYP3A4 through the PXR/NF-κB signaling pathway.

Methods

The experimental group was treated with long-term MHD for > 3 months, estimated-glomerular filtration rate (e-GFR) < 15 ml/min, normal Alb level (35.0-55.0 g/l), and no urine; the control group was not treated with hemodialysis, e-GFR < 60 ml/min, normal Alb level, and normal urinary excretion function. A suitable UPLC-MS/MS method was developed for detecting the concentration of 4-hydroxy ATV. Fresh primary hepatocytes were isolated from rats, and the uptake of ATV was tested in the uremic serum (US) group, IS group, and HA group and compared with that in the normal serum group. The metabolic status of ATV in the US group, IS group, and HA group was compared with that in the ATV group. RLM were extracted, and the metabolic experiment of ATV was performed in a human CYP3A4 model. The influence of UTs on pregnane X receptor (PXR)/nuclear factor kappa B (NF-κB) mRNA and the protein expression was also detected.

Results

IS and HA inhibited the ATV metabolism to varying degrees, wherein IS was the most potent inhibitor, producing > 50% inhibition. Meanwhile, the protein expression of CYP3A4 was downregulated after incubation with US, IS, and HA (p < 0.01). The excretion of ATV was also inhibited by 59.24% and 71.95% after incubation with IS and HA, respectively. The effects of uremic toxins on PXR/NF-κB mRNA and protein expression elucidated that PBUTs can inhibit ATV uptake and metabolism by exerting inhibitory effects on CYP3A4 through the PXR/NF-κB signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。