Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

微孔支架内局部流体流动和剪切应力的多普勒光学相干断层扫描成像

阅读:5
作者:Yali Jia, Pierre O Bagnaninchi, Ying Yang, Alicia El Haj, Monica T Hinds, Sean J Kirkpatrick, Ruikang K Wang

Abstract

Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml min(-1). The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn cm(-2) and 0.38+/-0.2 dyn cm(-2), respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。