Adaptations of the endothelin system after exercise training in a porcine model of ischemic heart disease

猪缺血性心脏病模型中运动训练后内皮素系统的适应性

阅读:4
作者:Juan Carlos Robles, Cristine L Heaps

Conclusions

Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ET(A) and ET(B) appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ET(A).

Methods

An ameroid constrictor was surgically placed around the proximal LCX artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomized into sedentary or exercise-training (treadmill; 5 days/week; 14 weeks) groups. Subsequently, arteries (~150 μm diameter) were isolated from collateral-dependent and nonoccluded myocardial regions and studied.

Objective

To the test the hypothesis that exercise training would increase endothelin-mediated vasoconstriction in collateral-dependent arteries via enhanced contribution of ET(A).

Results

Following exercise training, ET-1-mediated contraction was significantly enhanced in collateral-dependent arteries. Exercise training induced a disproportionate increase in the ET(A) contribution to the ET-1 contractile response in collateral-dependent arteries, with negligible contributions by ET(B). In collateral-dependent arteries of sedentary pigs, inhibition of ET(A) or ET(B) did not significantly alter ET-1 contractile responses in collateral-dependent arteries, suggesting compensation by the functionally active receptor. These adaptations occurred without significant changes in ET(A), ET(B), or ECE mRNA levels but with significant exercise-training-induced elevations in endothelin levels in both nonoccluded and collateral-dependent myocardial regions. Conclusions: Taken together, these data reveal differential adaptive responses in collateral-dependent arteries based upon physical activity level. ET(A) and ET(B) appear to compensate for one another to maintain contraction in sedentary pigs, whereas exercise-training favors enhanced contribution of ET(A).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。