Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells

Flotillin-1 促进人类内皮细胞中的 Toll 样受体 3 信号传导

阅读:8
作者:Christian Fork, Juliane Hitzel, Benjamin J Nichols, Ritva Tikkanen, Ralf P Brandes

Abstract

Endothelial cells are important elements in the vascular response to danger-associated molecules signaling through toll-like receptors (TLRs). Flotillin-1 and -2 are markers of membrane rafts but their true endothelial function is unknown. We hypothesized that flotillins are required for TLR signaling in human umbilical vein endothelial cells (HUVECs). Knockdown of flotillin-1 by shRNA decreased the TLR3-mediated poly-I:C-induced but not the TLR4-mediated LPS-induced inflammatory activation of HUVEC. As TLR3 but not TLR4 signals through the endosomal compartment, flotillin-1 might be involved in the transport of poly-I:C to its receptor. Consistently, uptake of poly-I:C was attenuated by flotillin-1 knockdown and probably involved the scavenger receptor SCARA4 as revealed by knockdown of this receptor. To determine the underlying mechanism, SILAC proteomics was performed. Down-regulation of flotillin-1 led to a reduction of the structural caveolae proteins caveolin-1, cavin-1 and -2, suggesting a role of flotillin-1 in caveolae formation. Flotillin-1 and caveolin-1 colocalized within the cell, and knockdown of flotillin-1 decreased caveolin-1 expression in an endoplasmic reticulum stress-dependent manner. Importantly, downregulation of caveolin-1 also attenuated TLR3-induced signaling. To demonstrate the importance of this finding, cell adhesion was studied. Flotillin-1 shRNA attenuated the poly-I:C-mediated induction of the adhesion molecules VCAM-1 and ICAM-1. As a consequence, the poly-I:C-induced adhesion of peripheral blood mononuclear cells onto HUVECs was significantly attenuated by flotillin-1 shRNA. Collectively, these data suggest that interaction between flotillin-1 and caveolin-1 may facilitate the transport of TLR3-ligands to its intracellular receptor and enables inflammatory TLR3 signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。