Benefits of combined exercise training on arterial stiffness and blood pressure in spontaneously hypertensive rats treated or not with dexamethasone

联合运动训练对接受或未接受地塞米松治疗的自发性高血压大鼠动脉僵硬程度和血压的益处

阅读:7
作者:Lidieli P Tardelli, Francine Duchatsch, Naiara A Herrera, Thalles Fernando R Ruiz, Luana U Pagan, Carlos A Vicentini, Katashi Okoshi, Sandra L Amaral

Abstract

Dexamethasone (DEX)-induced arterial stiffness is an important side-effect, associated with hypertension and future cardiovascular events, which can be counteracted by exercise training. The aim of this study was to evaluate the mechanisms induced by combined training to attenuate arterial stiffness and hypertension in spontaneously hypertensive rats treated or not with dexamethasone. Spontaneously hypertensive rats (SHR) underwent combined training for 74 days and were treated with dexamethasone (50 µg/kg s. c.) or saline solution during the last 14 days. Wistar rats were used as controls. Echocardiographic parameters, blood pressure (BP) and pulse wave velocity (PWV), as well as histological analyses of the heart and aorta, carotid and femoral arteries were performed. At the beginning, SHR had higher BP and PWV compared with Wistar rats. After 60 days, while BP increased in sedentary SHR, combined exercise training decreased BP and PWV. After 74d, the higher BP and PWV of sedentary SHR was accompanied by autonomic imbalance to the heart, cardiac remodeling, and higher arterial collagen deposition. DEX treatment did not change these parameters. On the other hand, trained SHR had reduced BP and PWV, which was associated with better autonomic balance to the heart, reduced myocardial collagen deposition, as well as lower arterial collagen deposition. The results of this study suggest that combined training, through the reduction of aortic collagen deposition, is an important strategy to reduce arterial stiffness in spontaneously hypertensive rats, and these lower responses were maintained regardless of dexamethasone treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。