Multiple Intermolecular Interaction to Improve the Abrasion Resistance and Wet Skid Resistance of Eucommia Ulmoides Gum/Styrene Butadiene Rubber Composite

多重分子间相互作用提高杜仲胶/丁苯橡胶复合材料的耐磨性和抗湿滑性

阅读:5
作者:Mingyang Li, Kuiye Wang, Yuzhu Xiong

Abstract

A rubber composite was prepared by using methyltriethoxysilane (MTES) to modify silica (SiO2) and epoxidized eucommia ulmoides gum (EEUG) as rubber additives to endow silica with excellent dispersion and interfacial compatibility under the action of processing shear. The results showed that compared with the unmodified silica-reinforced rubber composite (SiO2/EUG/SBR), the bound rubber content of MTES-SiO2/EEUG/EUG/SBR was increased by 184%, and its tensile strength, modulus at 100% strain, modulus at 300% strain, and tear strength increased by 42.1%, 88.5%, 130.8%, and 39.9%, respectively. The Akron abrasion volume of the MTES-SiO2/EEUG/EUG/SBR composite decreased by 50.9%, and the wet friction coefficient increased by 43.2%. The wear resistance and wet skid resistance of the rubber composite were significantly improved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。