Effect of N-acetyl-l-cysteine on Cell Phenotype and Autophagy in Pichia pastoris Expressing Human Serum Albumin and Porcine Follicle-Stimulating Hormone Fusion Protein

N-乙酰-L-半胱氨酸对表达人血清白蛋白和猪促卵泡激素融合蛋白的毕赤酵母细胞表型及自噬的影响

阅读:7
作者:Yingqing Xu, Zijian Geng, Chengxi Yang, Hongwei Zhou, Yixing Wang, Buayisham Kuerban, Gang Luo

Abstract

Pichia pastoris is widely used for the production of recombinant proteins, but the low secretion efficiency hinders its wide application in biopharmaceuticals. Our previous study had shown that N-acetyl-l-cysteine (NAC) promotes human serum albumin and porcine follicle-stimulating hormone fusion protein (HSA-pFSHβ) secretion by increasing intracellular GSH levels, but the downstream impact mechanism is not clear. In this study, we investigated the roles of autophagy as well as cell phenotype in NAC promoting HSA-pFSHβ secretion. Our results showed that NAC slowed down the cell growth rate, and its effects were unaffected by Congo Red and Calcofluor White. Moreover, NAC affected cell wall composition by increasing chitin content and decreasing β-1,3-glucan content. In addition, the expressions of vesicular pathway and autophagy-related genes were significantly decreased after NAC treatment. Further studies revealed that autophagy, especially the cytoplasm-to-vacuole targeting (Cvt) pathway, mitophagy and pexophagy, was significantly increased with time, and NAC has a promoting effect on autophagy, especially at 48 h and 72 h of NAC treatment. However, the disruption of mitophagy receptor Atg32, but not pexophagy receptor Atg30, inhibited HSA-pFSHβ production, and neither of them inhibited the NAC-promoted effect of HSA-pFSHβ. In conclusion, vesicular transport, autophagy and cell wall are all involved in the NAC-promoted HSA-pFSHβ secretion and that disruption of the autophagy receptor alone does not inhibit the effect of NAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。