ANGPTL4 Attenuates Ang II-Induced Atrial Fibrillation and Fibrosis in Mice via PPAR Pathway

ANGPTL4 通过 PPAR 通路减轻小鼠血管紧张素 II 诱发的心房颤动和纤维化

阅读:5
作者:Xi Zhu, Xiaogang Zhang, Xinpeng Cong, Luoning Zhu, Zhongping Ning

Abstract

Atrial fibrillation (AF) is the more significant portion of arrhythmia in clinical practice, with inflammation and fibrosis as its central pathological mechanisms. This study aimed to investigate angiopoietin-like 4 (ANGPTL4) effects on angiotensin II- (Ang II-) induced AF and its related pathophysiological mechanisms. C57BL/6J mice were randomized and divided into three groups: the control group, the Ang II group, and the ANGPTL4 group (Ang II with ANGPTL4 treatment). Mice were infused with Ang II (2000 ng/kg/min) and were administrated with recombinant human ANGPTL4 (rhANGPTL4, 20 μg/kg/day) for 3 weeks. The fibrosis was evaluated with Masson's trichrome staining in the atrial myocardium. mRNA levels of IL-1β, IL-6, collagen I, and collagen III were measured using real-time qRT-PCR. Protein levels of PPARα, PPARγ, CPT-1, and SIRT3 were measured using Western blotting. Compared to the control group, the mice infused with Ang II showed electrocardiogram characteristics of AF, and this effect was markedly attenuated in ANGPTL4-treated mice. ANGPTL4 also reversed the increase in cardiomyocyte apoptosis, inflammation, interstitial collagen fraction, and collagen gene expression in mice with Ang II. Mechanistically, ANGPTL4 inhibited the activation of several fatty acid metabolism-related proteins, including PPARα, PPARγ, and CPT-1, and the expression of SIRT3 protein in atrial tissues. In conclusion, ANGPTL4 attenuates Ang II-induced AF and atrial fibrosis by modulation in the SIRT3, PPARα, and PPARγ signaling pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。