Direct Infusion Metabolomics of the Photosystem and Chlorophyll Related Metabolites within a Drought Tolerant Plant Introduction of Glycine max

耐旱植物大豆光系统和叶绿素相关代谢物的直接灌注代谢组学

阅读:5
作者:Kevin J Zemaitis, Heng Ye, Henry T Nguyen, Troy D Wood

Abstract

Drought is the most prolific form of abiotic stress that legumes and cereal plants alike can endure, and the planting of an improper cultivar at the beginning of a season can cause unexpected losses up to fifty percent under water deficient conditions. Herein, a plant introduction (PI) of an exotic cultivar of soybean (Glycine max), PI 567731, which demonstrates a slow wilting (SW) canopy phenotype in maturity group III, was profiled under drought conditions in field trials in Missouri against a drought susceptible check cultivar, Pana. Metabolomic profiling was carried out on samples of leaves from each of these cultivars at V5 and R2 growth stages both while irrigated and while under drought stress for three weeks. PI 567731 was observed to have differential phytochemical content, and enhanced levels of chlorophyll (Chl) a/b and pheophytin (Pheo) were profiled by direct infusion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Indicating drought induced changes of the photosystem and photosynthetic capabilities alongside water preservation strategies are important within the SW phenotype drought response. Subsequent multivariate analysis was able to form predictive models, encompassing the variance of growth and drought stress of the cultivar. Moreover, the existence of unique Chl-related metabolites (CRM) (m/z > 900) were confirmed through tandem mass spectrometry. The resultant coordination of fatty acids to the core of the porphyrin ring was observed and played an unknown role in the proliferation of the photosynthesis. However, the relative ratio of the most abundant CRM is undisturbed by drought stress in PI 567731, in contrast to the drought susceptible cultivar. These results provide key insights into drought related metabolic mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。