MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo

MTA1 调节体内高级染色质结构和组蛋白 H1-染色质相互作用

阅读:7
作者:Jian Liu, Haijuan Wang, Fei Ma, Dongkui Xu, Yanan Chang, Jinlong Zhang, Jia Wang, Mei Zhao, Chen Lin, Changzhi Huang, Haili Qian, Qimin Zhan

Abstract

In the current study, for the first time, we found that metastasis-associated gene 1 (MTA1) was a higher-order chromatin structure organizer that decondenses the interphase chromatin and mitotic chromosomes. MTA1 interacts dynamically with nucleosomes during the cell cycle progression, prominently contributing to the mitotic chromatin/chromosome structure transitions at both prophase and telophase. We showed that the decondensation of interphase chromatin by MTA1 was independent of Mi-2 chromatin remodeling activity. H1 was reported to stabilize the compact higher-order chromatin structure through its interaction with DNA. Our data showed that MTA1 caused a reduced H1-chromatin interaction in-vivo. Moreover, the dynamic MTA1-chromatin interaction in the cell cycle contributed to the periodical H1-chromatin interaction, which in turn modulated chromatin/chromosome transitions. Although MTA1 drove a global decondensation of chromatin structure, it changed the expression of only a small proportion of genes. After MTA1 overexpression, the up-regulated genes were distributed in clusters along with down-regulated genes on chromosomes at parallel frequencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。