Hepatitis B virus-induced defect of monocyte-derived dendritic cells leads to impaired T helper type 1 response in vitro: mechanisms for viral immune escape

乙肝病毒诱导的单核细胞衍生树突状细胞缺陷导致体外 T 辅助细胞 1 型反应受损:病毒免疫逃逸机制

阅读:8
作者:Susanne Beckebaum, Vito R Cicinnati, Xia Zhang, Stanislav Ferencik, Andrea Frilling, Hans Grosse-Wilde, Christoph Erich Broelsch, Guido Gerken

Abstract

Dendritic cells (DC) are the most potent antigen-presenting cells and play a central role in the induction of antiviral immune responses. Recently, we have shown that monocyte-derived DC (MoDC) from patients with chronic hepatitis B virus (HBV) infection are functionally impaired. In our present study MoDC from healthy subjects were propagated in vitro and inoculated with HBV particles to investigate the precise mechanisms that underly MoDC dysfunction. T-cell proliferation assays revealed an impaired allostimulatory capacity of HBV-inoculated MoDC (HBV-MoDC) as well as a lower potential of stimulating autologous T cells against a recall antigen in comparison to control-MoDC. Interleukin-2, tumour necrosis factor-alpha and interferon-gamma production by T cells in proliferation assays with HBV-MoDC was significantly lower than with control-MoDC and correlated with lower IL-12 production in HBV-MoDC cultures. The presence of the nucleoside analogue lamivudine (3TC), an inhibitor of HBV replication, restored impaired allostimulatory function of HBV-MoDC and up-regulated major histocompatibility complex class II expression. These results show that HBV infection compromises the antigen-presenting function of MoDC with concomitant impairment of T helper cell type 1 responses. This may play an important role for viral immune escape leading to chronic HBV infection. However, 3TC treatment can overcome HBV-MoDC-related T-cell hyporeactivity and this underscores its important role in enhanced immune responses to HBV.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。