Single-nucleotide polymorphism characterization of gametocyte development 1 gene in Plasmodium falciparum isolates from Baringo, Uasin Gishu, and Nandi Counties, Kenya

肯尼亚巴林戈、瓦辛吉舒和南迪县恶性疟原虫分离株中配子体发育 1 基因的单核苷酸多态性表征

阅读:13
作者:Josephat K Bungei, Victor A Mobegi, Steven G Nyanjom

Conclusions

The existence of four nsSNPs implies that Pfgdv1 has a minimal diversity in the encoded protein. Selection analysis demonstrates that these nsSNPs are under balancing selection in both local and global populations. However, p.P217H exhibits positive directional selection consistent with previous reports where it showed differentiatial selection of P. falciparum in low and high transmission regions. Therefore, in-silico prediction and experimental determination of protein structure are necessary to evaluate Pfgdv1 as a target candidate for drug design and development.

Methods

This study characterized single-nucleotide polymorphisms (SNPs) in primary sequences (n = 30) of Pfgdv1 gene generated from thirty blood samples collected from patients infected with P. falciparum and secondary sequences (n = 216) retrieved from PlasmoDB. ChromasPro, MUSCLE, Tajima's D statistic, SLAC, and STRUM were used in editing raw sequences, performing multiple sequence alignment (MSA), identifying signatures of selection, detecting codon sites under selection pressure, and determining the effect of SNPs, respectively.

Results

MSA of primary and secondary sequences established the existence of five SNPs, consisting of four non-synonymous substitutions (nsSNPs) (p.P217H, p.R398Q, p.H417N, and p.D497E), and a synonymous substitution (p.S514S). The analysis of amino acid changes reveals that p.P217H, p.R398Q, and p.H417N comprise non-conservative changes. Tajima's D statistic showed that these SNPs were under balancing selection, while SLAC analysis identified p.P217H to be under the strongest positive selection. . Further analysis based on thermodynamics indicated that p.P217H has a destabilizing effect, while p.R398Q and p.D497E have stabilizing effects on the protein structure. Conclusions: The existence of four nsSNPs implies that Pfgdv1 has a minimal diversity in the encoded protein. Selection analysis demonstrates that these nsSNPs are under balancing selection in both local and global populations. However, p.P217H exhibits positive directional selection consistent with previous reports where it showed differentiatial selection of P. falciparum in low and high transmission regions. Therefore, in-silico prediction and experimental determination of protein structure are necessary to evaluate Pfgdv1 as a target candidate for drug design and development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。